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Trajectories and spin motion of massive spin-4 particles in 
gravitational fields 

Jurgen Audretsch 
Fakultat fur Physik, Universitat Konstanz, Postfach 5560, D-7750 Konstanz 1, West 
Germ any 

Received 23 June 1980 

Abstract. From covariant Dirac theory in curved space-time, dynamical equations for the 
motion of the spin and the spin-induced non-geodesic behaviour of the particle trajectories 
are deduced. This is done for arbitrary space-times in a generally covariant and observer- 
independent way. The procedure is thereby based on a WKB scheme and a Gordon 
decomposition of the Dirac probability four-current. A complete, correspondence between 
the quantum mechanical equations of motion and the classical equations for extended 
isolated bodies or pole-dipole particles is found. This can as well be taken as a confirmation 
that to the first order of a WKB approximation the gyro-gravitational factors of the classical 
angular nromentum and of the intrinsic quantum mechanical spin agree. 

1. Introduction 

With regard to an external electromagnetic field in flat space-time Bargmann et a1 
(1959) derived within the framework of classical mechanics and electrodynamics the 
classical motion of charged spinning particles and an equation for the precession of the 
polarisation four-vector. Later it has been possible successfully to deduce these 
classical equations directly from quantum mechanics in discussing the WKB solutions to 
the Dirac equation in the classical limit as h approaches zero. For a derivation and the 
earlier literature see Rafanelli and Schiller (1964). 

In a metric theory of gravitation the interaction with an external gravitational field is 
described by embedding physics in an otherwise-determined curved space-time. In 
curved space-time as well we have equations of motion for classical spinning bodies 
(extended bodies or pole-dipole point particles) and equations for the precession of 
their classical angular momentum. The question also arises for external gravitational 
fields: Is it possible without restricting the space-time to derive from generally 
covariant Dirac theory dynamical equations for the influence of the spin on particle 
trajectories and for the motion of the spin along these trajectories, and do these 
equations ‘mirror’ the classical equations? It is the purpose of this paper to demonstrate 
that this can be done in a satisfactory way by means of a WKB extension using a Gordon 
decomposition of the Dirac probability four-current. 

Because of some misleading remarks in the literature, it should be stressed, 
however, that it cannot be the intention to ‘deduce’ the classical equations of motion for 
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macroscopic bodies from quantum mechanics in discussing some limiting case. There is 
no conceptually and mathematically elaborated scheme which would enable this to be 
done. The only applications of quantum mechanics which are of a genuine macroscopic 
nature can be found in connection with Bose-Einstein condensation for superfluids and 
similar phenomena. Coherent states should be as suitable for discussing a reasonable 
approach to classical physics. In any case, the quantum mechanical spin itself always 
remains as an intrinsic quantity without any classical limit. Also, an attempt to 
complete this intrinsic spin and to start instead from the total angular momentum to 
derive classical physics would have no advantage over purely classical calculations, 
because the same difficulties (such as the definition of a mass centre or of multiple 
moments) would soon appear. 

Nevertheless, it is intrinsically important to study within quantum mechanics the 
coupling of the spin to the gravitational field, the spin motion and its influence on 
trajectories. The common group-theoretical origin of angular mqmentum and spin 
then suggests a comparison of the quantum mechanical equations with those describing 
the influence of classical angular momentum in curved space-time. Similarities are to 
be expected. 

It is well known that the existence of negative-energy solutions makes it difficult to 
relate the dynamical variables of the c-number Dirac theory to the corresponding 
classical quantities. An instructive example is the Zitterbewegung. It vanishes if the 
state in question is a superposition of positive-energy waves only. Therefore to 
establish a correspondence with classical mechanics one has to restrict the influence of 
the negative-energy solutions and proceed to a classical limit. By the WKB expansion 
this can be done in an observer-independent way. In addition, to reduce the total 
angular momentum to the spin only we have to use a localised approach which refers to 
quantities defined on a worldline and its infinitesimal surrounding. After the intro- 
duction of an observer field they would obtain the meaning of physical densities. 

To enable a comparison with the dynamics of isolated classical bodies with multipole 
moments we note that the equations of motion for the monopole and dipole moments of 
a body as determined by the energy-momentum tensor are 

dS"'/ds = P"Vp - PBVu ( l . l b )  

where the influence of higher moments is neglected. For the respective derivations, 
difficulties and further references see Dixon (1979). P" is thereby the dynamically- 
defined momentum vector and SUB the angular momentum tensor of the body. The 
kinematically introduced velocity Vu = dz"/ds is the tangent vector to the time-like 
worldline z"(x) to which the moments refer. It is usually taken to be that of a suitably 
defined mass centre. The kinematical velocity Vu and the dynamical momentum P" 
will not in general be parallel. 

The same equations (1.1) are obtained for a localised classical particle with an 
internal structure. The corresponding energy-momentum tensor is in this case given by 
a pole-dipole-like mass distribution. It contains a delta function and its first derivatives. 
The support of both is the V" worldline. For the calculation and further references see 
Westpfahl (1969). 

Because several authors have already taken an interest in the problem we are 
studying we give a brief discussion of the previous literature in the Appendix. 
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2. WKB expansion 

It is convenient to formulate the Dirac theory in curved space-time with respect to an 
orthonormal tetrad field: hE(x) :  

hzh  :gap = Tab*  

The Dirac equation then takes the form 

iyFq i f i  - ( m / h ) 9  = 0 

77 ab ,  
yl* = h2ya,  y(y) = 

(2.2) 
with 

(2.3~1, b, c) y ' l *y" '  = g"* 
The covariant spinor derivative is thereby given by 

(2.4~2, b) b a  vr,, = vr,, + r,vr, r F  =&:;,haby y 

and for the gamma matrices we have 

Y U ; e  = 0, y a S E  = 0. (2.5a, b )  

In the WKB expansion the Dirac solutions Y(x)  are written as a phase factor and a 
The y a  are the standard Dirac matrices. 

four-spinor amplitude which is a power series in h:  
m 

~ ( x )  = exp(iS(x)/h) 1 (-ih)"a,(x), 
n=O 

WKB solutions of the Dirac equation to any given order in A are obtained by inserting 
equation (2.6) in equation (2.3) and equating to zero the coefficient of each power of h. 
From the coefficients of ho and ti1 we obtain equations for the first terms of the spinor 
amplitude : 

(r*S,, + m)ao = 0 ,  (2.7) 

(y"S,, + m)al= - - Y ~ ~ O ; ~ .  (2.8) 

det(y"S,, + m )  = 0. (2.9) 

s"s,, = m2 (2.10) 

The condition that equation (2.7) has a non-trivial solution is 

This implies the Hamilton-Jacobi equations of relativistic spinless particles 

which can as well be obtained by iterating equation (2.7) using equation ( 2 . 3 ~ ) .  We 
define 

pa = -S,u, p a p a  = m2 (2.11) 

U, = ( l / m ) p a  = -U/m)S,,, unu, = 1. (2.12) 

and introduce the corresponding normalised time-like vector U a 

i c = 1. The signature of the metric tensor g,, is (- - - +). ;cy denotes the covariant and ,cy the partial 
derivative. cy, @, . . . = 1 , .  . . ,4 are tensor indices raised and lowered with gap. a, b, . . . = 1 , .  . . ,4 and 
8, 6 , .  . . = 1, 2 ,  3 are tetrad indices raised and lowered with qnb =diag(-1, -1, -1, + l ) .  The corresponding 
object is a Riemann scalar with regard to a, b, . . . . Particular values of a, b .  . . are denoted by brackets: 
A(') =A"=' . Symmetrisation: A,,,, = f (Aap  +A,,). Antisymmetrisation: A[=,] = ;(A,@ -A,,). 
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u a  is the tangent vector to the trajectories orthogonal to the system of space-like 
hypersurfaces S = constant. Accordingly the trajectories form a congruence of time- 
like worldlines which is geodesic: 

(2.13) U, = U,,,UE = 0 

and rotation-free: 

Omp = Ucrr,p1 - kYup1= 0. (2.14) 

The remaining differential behaviour of the congruence is given by 

U ,p = Gap + Ohapl3, U[a,i31 = 0 (2.15a, b )  

with 

hap = gap - u , u ~ ,  hapup = 0. (2.16) 

It still depends on the shear 6,p 

= h 3 i u ( , , * ,  - u E , A p / 3  (2.17) 

6[41 = 0, 6‘, = 0, umpuoL = 0 (2.18) 

and the expansion 0 

0 = Ua@ (2.19) 

of the congruence. Both are determined by initial conditions and the metric properties 
of the space-time. 

By equation (2.7) ao(x) is only determined algebraically. The corresponding matrix 
is of rank two. The general solution of equation (2.7) is therefore of the form 

sob) = P l ( X ) b O l ( X )  + P 2 ( X ) b 0 2 ( X )  (2.20) 

where b o l ( x )  and b O 2 ( x )  are the two linearly independent solutions? 

(2.21) 

with 

E ( x ) = p  L l  h ,  (4) , k‘((x) = p F h t .  (2.22) 

Beyond that the differential behaviour of ao(x)  is additionally restricted by the 
solvability condition of equation (2.8). Equation (2.8) is an inhomogeneous linear 
algebraic equation for al .  Accordingly the condition for the existence of a non-trivial 

t We choose 

where the r‘ are the standard Pauli spin matrices. 
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solution a l  is that all solutions of the correspondi,ng transposed homogeneous equations 
are orthogonal to the inhomogeneity. Comparison with equation (2.7) shows that these 
solutions are in our case given by and z. The solvability conditions of equation 
(2.8) are therefore? 

boiYnao;, = 0, bOZyPaO;a = 0.  (2.23) 
- - 

3. Propagation equations 

The equations (2.23) imply propagation equations for the spinor ao(x) along the u a  
lines. To show this we restrict to an arbitrary but fixed worldline of the u a  congruence 
and choose a particular tetrad field on and in the neighbourhood of the worldline. 
Equations which are invariant with regard to local tetrad rotations coupled with spin 
transformations 

h:(x)+ h z ( x )  =fi:(x)hz(x), x(x)-+x’(x) = $(x)x(x) (3.1) 

may then be verified without any loss of generality in using this particular tetrad field. 
On this worldline itself we adjust the time-like vector h:) of the tetrad parallel to 

2.4,: 

hP4) t U, (3.2) 

and propagate as well the space-like vectors hz parallelly along the geodesic U, 
worldline. Additionally we adjust the tetrad field in the neighbourhood of the worldline 
by parallel propagation in all directions, so that we have in total on the worldline 

hz;E t 0. (3.3) 

In the following the asterisk denotes the worldline and the choice (3.3). For the spinor 
affinity this implies with equation (2.4b) 

r, t 0. (3.4) 

The solutions bol and bO2 reduce because of 

E t m, k d  t0 (3.5) 

to 

Thus we have with equations (2.3) and (3.2): 
- 

G y @ b o l =  U @ ,  bo2~@boi = 0, 
I - 
boiy@boz = 0, b02~@b02 = U @. 

For the derivatives of the components we find 

E,,h; = m ( u E h E  to, (4) 

(3 .7a )  

(3.7L7) 

(3.8) 

t The bar denotes the adjoint: = ‘ P + Y ( ~ ) ,  
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(3.9) 
(3.10) 

where we have used equations (3.3) and (2.15). Thence, and because of equation 
(2.18), we obtain from equations (2.21) and (3.6) after some calculation 

( 3 . 1 1 ~ )  

(3.1 1 b )  

Note that the shear 
appear. 

Inserting equation (2.20) we first obtain 

and other derivatives orthogonal to the U ,  congruence do not 

The relations above enable the evaluation of the solvability condition (2.23). 

( 3 . 1 2 ~ )  

(3.12b) 

which reduce with (3.11) to the generally valid equations 

= -(0/2)P,,  P ' , a U ,  = -(0/2)P2. (3.13) 

These describe the propagation of the scalar factors Pl(x)  and p 2 ( x )  and therefore the 
precession of the spin along the worldlines of the u a  congruence. Furthermore because 
of equations (3.4) and (3.6) we have 

bOl,aUc( = O ,  b02;,Ua = 0.  (3.14) 

These equations are first of all obtained on the worldline * using the choice (3.3). But 
they are again generally valid for the whole congruence. From equations (3.13) and 
(3.14) we finally obtain as propagation equation for the spinor a. 

ao;*ua = -(0/2)ao. (3.15) 

It proves to be convenient to introduce a normalised spinor bo proportional to a. 

ao =fbo, bObo=l. (3.16) 

aoao = PTPl+ P Z P 2  = f' (3.17) 

- 
with 

Because 
- 

we obtain with equation (3.13) the respective propagation equations 

(3.18) 

(3.19) 

which demonstrate that the spinor bo is parallelly propagated along the u a  congruence. 

4. Gordon decomposition 

To exhibit explicitly the influence of the spin on the trajectories, we perform a Gordon 
decomposition (Gordon 1928) of the Dirac probability current j,: 

j "  = 9 y a y ,  j";c( = 0. (4.1) 
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Introducing 
( + P P  = iyr*yP1 

this leads to 
j "  = j :  + j&  

with the definitions 

(4.2) 

(4.3) 

which are invariant under the coupled transformations (3.1). Both currents satisfy a 
continuity equation 

= 0, j&;* = 0. (4.6) 
For a physical interpretation of the decomposition above and for the discussion of 

the results in § §  5 and 6 below it is useful to recall that in 9 = (2) the components qB 
are of order v / c  compared with qn, Thus we have for the bilinear densities 

Qq= q L q A +  o ( v 2 / c 2 ) ,  = O(v/c),  (4.7~2, b )  

(4.7c) Q(+d6y = 9:(+'*,4 + o ( v 2 / c 2 ) .  

As will be seen below, we also have 

jzu, = j "u,  + 0 ( h 2 ) .  (4.8) 

Hence, and because the space-like part of j :  behaves with equation (4.7) as the 
three-vector current density in Schrodinger theory, j :  is interpreted as a convection 
four-current. With equation (4.7) we obtain the result that j &  represents the curl of the 
spin density. Because the spin of the electron is coupled to a magnetic dipole moment, 
this curl of a magnetic dipole density is, according to Maxwell theory, equivalent to an 
electric current. Thus with regard to external electromagnetic fields j R  has the meaning 
of a magnetisation current. 

These physical interpretations suggest that an attempt to reflect the equations of 
motion (1.1) mentioned in the Introduction should be based on the streamlines of the 
convection current jR. 

Introducing the WKB expansion (2.6) we obtain with equation (3.16) up to terms of 
the order h2 

(4.9) j y  = [f2+ (h/i)(Gal -Gao)]u* + ( h / 2 m i ) f 2 ( ~ ' * b o - ~ ; ; b o l ' * ) + ~ ( ~ 2 )  

and 

j R  = ( h / 2 m ) ( G c ~ " ~ a o ) , ~  + 0 ( h 2 )  0 ( h 2 ) .  (4.10) 

Note that the term in equation (4.9) which contains bo is orthogonal to U,. This is an 
immediate consequence of equation (3.19). The same is the case for jR1  : 

(4.11) 

where we have used (2.15b), the special choice of equations (3.2), (3.4), (3.6) and the 
standard y a  matrices. 
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5. Spin motion 

The convection current j ;  of equation (4.4) defines a congruence of time-like curves 
with tangent vector u a  : 

v a  - j:, Dave = 1, (5.1) 
which agrees to lowest order in h with the ua  congruence orthogonal to the hypersur- 
faces S = constant: 

U" = u a  +O(h).  (5.2) 
We look at a solution 9 ( x )  of the 'free' Dirac equation (2.2) as describing a stream of 

particles. With regard to the spin of these particles we introduce 

According to equation (4.7) we have to interpret quap9 as spin density and q9 as the 
particle number density. Thus the components of the locally-defined tensor in (5.3) 
represent the components of the spin per particle. 

The corresponding spin vector S" related to the u" congruence is 

(5.4) 

To order ho we have 

( 5 . 5 )  S" 0 -1 - 2 7  aPYSup&ySbo 

(-s;so")l'z = 1 (5 .6 )  

bouapbo = v a p v s ~  "S t .  (5.7) 

with 

and 
- 

The spin motion is now an immediate consequence of the propagation equations 
(3.19) with equations ( 2 . 5 ~ )  and (2.13j: 

(bocapbo);cUE = 0, S & U E  = 0. (5.8) 
Accordingly we find for the spin motion a parallel propagation along the u' congruence 

This quantum mechanical result is to be compared with the classical equation (1.1b). 

6. Trajectories 

The congruence of the streamlines formed by the convection current will in general be 
geodesic only to order zero in h. Corrections of higher order in h represent the influence 
of the spin on the trajectories. We obtain u a  in normalising j ;  of equation (4.9). 

U" = u a  +(h/2mi) (bo 'ab~-bob~ 'a)+0(h2) .  (6.1) 
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Note that the term in equation (4 .9 )  which contains a l  does not appear in the coefficient 
of h. This enables the determination of the deviation from the geodesic behaviour 

(6.2) 

already within this order. U? is the term of order h in equation (6 .1) .  Using the 
commutator of the covariant spin derivative 

2 u,,,u' = 2ul[,; , ,u'+O(h ) 

x [ ; ~ ; ~ I  = - ( i / 8 ) R u p y ~ c y S ~  (6 .3 )  

mua,cur = ( ~ / 2 ) ( 1 / 2 ) ~ , p , s b o a ~ ' b o u ~  + 0 ( h 2 ) .  (6 .4 )  

we finally obtain as the generalised force equation for the U" congruence 
- 

This describes the deviation from the geodesic behaviour due to the coupling of the spin 
density to the curvature. It is to be compared with ( 1 . l a ) .  

It is of interest to note the result which would be obtained without Gordon 
decomposition, if we choose the normalised vector u a  to be parallel to the probability 
current j"  instead of to the convection current j : ,  In this case using equation (4 .10)  we 
find equation (6 .4)  with the additional term 

- hR .&aKS,"~ ' U  (6.5) 

on the right-hand side. Recalling the interpretation of the magnetisation current j K  as 
curl of the spin density, it is plausible that its propagation is determined by space-like 
derivatives of the uu field as well. This introduces the kinematical quantities of the U" 

congruence. 

7. Discussion 

7.1. 

The quantum mechanical equations (5.9) and (6 .4 )  reflect the classical equations ( 1 . 1 )  if 
one identifies P" with mi:. In the classical approach there is in general no restriction of 
the time-like worldline z * ( x )  with the tangent vector V", On the other hand, the 
quantum mechanical considerations refer to an infinitesimal tube around an arbitrary 
worldline taken out of a congruence of streamlines. Therefore to enable a comparison 
we must also specialise z a ( x )  to the centre-of-mass line. In this case P" is very nearly 
parallel to V" under most circumstances. This completes the comparison as far as 
extended bodies are concerned. For pole-dipole point particles the difference between 
Pa and V" is interpreted as reflecting the Zitterbewegung. Because of the WKB 
approach we are essentially restricted to positive-energy solutions. Therefore no such 
Zitterbewegung is to be expected. 

7.2. 

The identification of the dynamically defined Pa with mj: instead of mi" has already 
been partly justified in 04. We add that because of equation (4 .7)  it is mjr which 
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according to its structure (4.4) represents a momentum density. Note that because of 
equations (5.1) and (6.1) we have a physical density on the right-hand side of equation 
(6.4) as well. 

7.3. 

It is typical that the force equations (6.4) which describe the influence of the spin were 
obtained by using second derivatives of the spinor field. For point particles the equation 
based on second derivatives already represents tidal forces. That the non-geodesic 
behaviour of Dirac particles results from a non-local interaction with the metric field 
reflects the fact that Dirac particles appear to be extended over a domain of linear 
dimensions h / m  if one excludes negative-energy solutions. This has been done above 
by restriction to the first order in h of a WKB expansion. 

7.4. 

It is remarkable that there is a complete correspondence between the classical formula 
( 1 . l a )  and the quantum mechanical result (6.4), not only with regard to the overall 
structure of the equations but also including the numerical factors. This result can be 
taken as a confirmation that for arbitrary metric fields to the first order of a WKB 
expansion of the fermion field the gyro-grauitational factors of the classical angular 
momentum and of the intrinsic quantum mechanical spin agree. This is in contrast to 
the gyromagnetic factors in external electromagnetic fields. Accordingly for fermions 
all types of angular momentum couple with the same ratio to the ‘magnetic type’ 
gravitational components contained in a general metric field. That the gyro-gravita- 
tional factors agree has also been shown for certain weak gravitational fields in the 
non-relativistic approximation using the Foldy-Wouthuysen representation by De 
Oliveira and Tiomno (1962). 

7.5. Summary 

Using a WKB scheme and a Gordon decomposition we have shown for arbitrary 
space-times in a generally covariant and observer-independent way that the equations 
of motion for the spin and the spin-induced non-geodesic behaviour of the trajectories 
are in total accordance with the corresponding classical equations including numerical 
factors. 

Appendix 

We give a brief survey of the previous literature and point out differences from the 
above approach. 

Lawrence (1970) also treats the influence of spin on the trajectories of fermions by 
means of a WKB type approximation. His approach differs from our treatment in the 
following points: Lawrence considers only the approximation of linearised gravitational 
fields in flat space-time. His calculation is based on the iterated Dirac equation, and he 
claims that this is necessary to obtain a spin-induced non-geodesic behaviour of the 
trajectories. This was derived above from the non-iterated Dirac equation. A serious 
objection to his calculation seems to be that he makes use of the condition @P = 1. 
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Equation (3.15) shows that this amounts to the restriction that the trajectories should be 
expansion-free, which is in general not the case. 

Ehrenfest’s equations demonstrate that in non-relativistic quantum mechanics 
equations of motion can most directly be derived in the Heisenberg picture. In curved 
space-time the corresponding approach would have the disadvantage that the results 
would depend on the observer congruence to which the time-like derivative is related. 
To avoid this dependence, a number of authors (Wong 1972, Rumpf 1979, Drechsler 
1979) have introduced a generalised Heisenberg picture. They enlarge the space of 
dynamical variables by introducing t and -ih a / a t  as an additional pair of conjugate 
dynamical operators. In addition a generalised time dependence is introduced as the s 
variation 

i h d  = ih dO/ds = [0, HI, 

so that a 4 + 1 formalism results. Operators are then replaced according to an idea of 
Corben (1968) by 

0’ = 0 + ( ih/2m)O 

which allows an ordering in powers of h. The equations for the 0’ can finally be 
compared with the classical equations. This 4 + 1 formalism resembles closely the 
proper time technique of Fock (1937) which was popularised by Schwinger (1951). But 
in the latter cases the formalism only serves as a method of obtaining rigorous solutions 
which are then interpreted within the original context. 

Although successful from a formal point of view, this 4 + 1 redefinition of dynamics 
has the weakness that the relation to the usual physical interpretations based on 
expectation values has not yet been satisfactorily established. In this sense the 
procedure is incomplete. Wong (1972) shows that to establish an equivalence with the 
original Heisenberg picture one has to assume that expectation values of operator 
products may be replaced by products of expectation values. 

The Zitterbewegung does not appear if one changes to the mean position and mean 
spin operators of the Foldy-Wouthuysen representation. For the case of Dirac theory 
in linearised gravitational fields in flat space-time this has been done by Kannenberg 
(1977). He calculates relativistic corrections to the respective two-component Pauli 
equation. The structure obtained is considerably more complex than equation (1.1). 
Furthermore, because the procedure is based on a Hermitian Hamiltonian related to a 
particular time-like coordinate, manifest general covariance is lost, which makes a 
physical interpretation of the terms obtained rather difficult. 

Finally we must mention Barker and O’Connel (1970) who studied in flat space- 
time the gravitational two-body interaction due to graviton exchange. By replacing the 
spin terms in the corresponding Hamiltonian in an appropriate way by classical 
quantities, by dropping the contact terms and restricting consideration to order ( v l c ) ’ ,  
the classical results for the motion of a gyroscope can be obtained. 
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